381 research outputs found

    Stability and Vortex Shedding of Bluff Body Arrays

    Get PDF
    The primary purpose of this study was to develop an understanding of the stability of laminar flow through bluff body arrays, and investigate the nature of the unsteady vortex shedding regime that follows. The flow was numerically investigated using a specially developed multi-domain spectral element solver. Important criteria in the solver development were flexibility, efficiency, and accuracy. Flexibility was critical to the functionality of the code, as arrays of varying geometry were investigated. Efficiency with a high degree of accuracy was also of primary importance, with the code implemented to run efficiently on today's massively parallel architectures. Numerical two-dimensional stability analysis of the flow in several configurations of inline and staggered array geometries was performed. The growth rate, eigenfunction, and frequency of the disturbances were determined. The critical Reynolds number for flow transition in each case was identified and compared to that of flow over a single body. Based on the solutions of the laminar flow, a one-dimensional analytical analysis was performed on selected velocity profiles in the wake region. The results of this analysis were used to guide the interpretation of the two dimensional results and formulate a general theory of stability of inline and staggered bluff body arrays. The nature of the flow in the unsteady regime following the onset of instability was examined for an inline and a staggered arrangement. Particular attention was focused on the vortex shedding which was visualized and quantified through computation of the flow swirl, a quantity which identifies regions of rotary motion. The conditions required for the generation of leading edge vortex shedding were identified and discussed. Finally, a third geometry related to the inline and staggered arrays was considered. Flow solution data for this geometry is presented and its suitability as a model for louvered arrays was discussed.Air Conditioning and Refrigeration Project 11

    Probability distribution functions in turbulent convection

    Get PDF
    Results of an extensive investigation of probability distribution functions (pdfs) for Rayleigh-Benard convection, in hard turbulence regime, are presented. It is shown that the pdfs exhibit a high degree of internal universality. In certain cases this universality is established within two Kolmogorov scales of a boundary. A discussion of the factors leading to the universality is presented

    Point-particle drag, lift, and torque closure models using machine learning: hierarchical approach and interpretability

    Full text link
    Developing deterministic neighborhood-informed point-particle closure models using machine learning has garnered interest in recent times from dispersed multiphase flow community. The robustness of neural models for this complex multi-body problem is hindered by the availability of particle-resolved data. The present work addresses this unavoidable limitation of data paucity by implementing two strategies: (i) by using a rotation and reflection equivariant neural network and (ii) by pursuing a physics-based hierarchical machine learning approach. The resulting machine learned models are observed to achieve a maximum accuracy of 85% and 96% in the prediction of neighbor-induced force and torque fluctuations, respectively, for a wide range of Reynolds number and volume fraction conditions considered. Furthermore, we pursue force and torque network architectures that provide universal prediction spanning a wide range of Reynolds number (0.25≤Re≤2500.25 \leq Re \leq 250) and particle volume fraction (0≤ϕ≤0.40 \leq \phi \leq 0.4). The hierarchical nature of the approach enables improved prediction of quantities such as streamwise torque, by going beyond binary interactions to include trinary interactions

    Linear stability analysis of subaqueous bedforms using direct numerical simulations

    Get PDF
    We present results on the formation of ripples from linear stability analysis. The analysis is coupled with direct numerical simulations of turbulent open-channel flow over a fixed sinusoidal bed. The presence of the sediment bed is accounted for using the immersed boundary method. The simulations are used to extract the bed shear stress and consequently the sediment transport rate. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology and the sediment flux is obtained from the three-dimensional turbulent simulations. The stability analysis is performed on the Exner equation, whose input, the sediment flux, is provided from the simulations. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage. We also present results from a wave packet analysis using a one-dimensional Gaussian ridge

    Heroism and Social reflection in the Screen Plays of Ramarajan

    Get PDF
    Screen plays are always dominant in the history of Tamil cinema. Commercially many movies faced failures and some songs of those movies became very successful. Screen play songs are usually formed according to each story and screenplays. Some songs captures the mind of people and it remains in their mind throughout their life. Not just the songs or music gets popular, the actors who acted in the songs also sometimes became very popular and attains high status. and for this, apart from the acting, the song's grand scenery and the social environment depicted in the story play a major role. Thus, in the 1980s in the Tamil film industry, actor Ramarajan earned the title of 'People's Hero'/'Village Hero' and star status through village background stories and screen play songs. Most of Ramarajan's stories are set in rural settings, and the characters of those films are folk singers and actors. In such films, the cultural rituals of the villages, other rituals, dialects, worship methods, natural environment, etc. are clearly visualized in the lyrics of the songs. Therefore, Tamil people also enjoyed and celebrated it easily. It is a fact that the success of a movie depends on people's support. This article briefly examines the social reflection and heroism of Ramarajan’s stories

    On the Role of Sidewalls in the Transition From Straight to Sinuous Bedforms

    Get PDF
    We present results from direct numerical simulation on the transition from straight-crested to sinuous-crested bedforms. The numerical setup is representative of turbulent open channel flow over an erodible sediment bed at a shear Reynolds number of Reτ = 180. The immersed boundary method accounts for the presence of the bed. The simulations are two-way coupled such that the turbulent flow can erode and modify the bed, and in turn, the bed modifies the overlying flow. Coupling from the flow to the bed occurs through the Exner equation, while back coupling from the bed to the flow is achieved by imposing the no-slip and no-penetration condition at the immersed boundary. The simulation setup is similar to that by Zgheib et al. (2018a, https://doi.org/10.1002/2017JF004398) except for the presence of sidewalls to better mimic laboratory flume conditions. Sidewalls are observed to significantly increase bedform sinuosity. Key Points Lateral sidewalls significantly increase crestline sinuosity Influence of lateral domain extent on sinuosity is small but noticeable Influence of lateral extent is amplified in the presence of sidewall

    A Heuristic Algorithm for Resource Allocation/Reallocation Problem

    Get PDF
    This paper presents a 1-opt heuristic approach to solve resource allocation/reallocation problem which is known as 0/1 multichoice multidimensional knapsack problem (MMKP). The intercept matrix of the constraints is employed to find optimal or near-optimal solution of the MMKP. This heuristic approach is tested for 33 benchmark problems taken from OR library of sizes upto 7000, and the results have been compared with optimum solutions. Computational complexity is proved to be (2) of solving heuristically MMKP using this approach. The performance of our heuristic is compared with the best state-of-art heuristic algorithms with respect to the quality of the solutions found. The encouraging results especially for relatively large-size test problems indicate that this heuristic approach can successfully be used for finding good solutions for highly constrained NP-hard problems

    Front dynamics and entrainment of finite circular gravity currents on an unbounded uniform slope

    Get PDF
    We report on the dynamics of circular finite-release Boussinesq gravity currents on a uniform slope. The study comprises a series of highly resolved direct numerical simulations for a range of slope angles between 5∘ and 20∘ . The simulations were fixed at Reynolds number Re=5000 for all slopes considered. The temporal evolution of the front is compared to available experimental data. One of the interesting aspects of this study is the detection of a converging flow towards the centre of the gravity current. This converging flow is a result of the finite volume of the release coupled with the presence of a sloping boundary, which results in a second acceleration phase in the front velocity of the current. The details of the dynamics of this second acceleration and the redistribution of material in the current leading to its development will be discussed. These finite-release currents are invariably dominated by the head where most of the mixing and ambient entrainment occurs. We propose a simple method for defining the head of the current from which we extract various properties including the front Froude number and entrainment coefficient. The Froude number is seen to increase with steeper slopes, whereas the entrainment coefficient is observed to be weakly dependent on the bottom slope

    Long-lasting effect of initial configuration in gravitational spreading of material fronts

    Get PDF
    We present the results from laboratory experiments and fully resolved simulations pertaining to finite-release turbulent density flows with a non-axisymmetric initial shape. First, we demonstrate that the effects of the initial shape influence the current’s evolution well into the long-time phase which would corresponds to the inertial self-similar phase in the case of planar or axisymmetric configurations. Then, we identify the physical mechanisms responsible for this dependence and propose a new model capable of capturing the dynamics of such releases. Finally, we show that this dependence on the initial configuration is robust for various types of gravity currents over a wide range of parameters such as Reynolds number, density ratio, and aspect ratio

    Dynamics of non-circular finite-release gravity currents

    Get PDF
    The present work reports some new aspects of non-axisymmetric gravity currents obtained from laboratory experiments, fully resolved simulations and box models. Following the earlier work of Zgheib et al. (Theor. Comput. Fluid Dyn., vol. 28, 2014, pp. 521–529) which demonstrated that gravity currents initiating from non-axisymmetric cross-sectional geometries do not become axisymmetric, nor do they retain their initial shape during the slumping and inertial phases of spreading, we show that such non-axisymmetric currents eventually reach a self-similar regime during which (i) the local front propagation scales as t1/2 as in circular releases and (ii) the non-axisymmetric front has a self-similar shape that primarily depends on the aspect ratio of the initial release. Complementary experiments of non-Boussinesq currents and top-spreading currents suggest that this self-similar dynamics is independent of the density ratio, vertical aspect ratio, wall friction and Reynolds number Re , provided the last is large, i.e. Re⩾O(104) . The local instantaneous front Froude number obtained from the fully resolved simulations is compared to existing models of Froude functions. The recently reported extended box model is capable of capturing the dynamics of such non-axisymmetric flows. Here we use the extended box model to propose a relation for the self-similar horizontal aspect ratio χ∞ of the propagating front as a function of the initial horizontal aspect ratio χ0 , namely χ∞=1+(lnχ0)/3 . The experimental and numerical results are in good agreement with the proposed relation
    • …
    corecore